homotopy group - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

homotopy group - vertaling naar russisch

ALGEBRAIC CONSTRUCT CLASSIFYING TOPOLOGICAL SPACES
Homotopy groups; Exact sequence of a fibration; Higher homotopy groups; Long exact sequence of a fibration; Homotopy theorem; Relative homotopy groups; Homotopy long exact sequence; Long exact homotopy sequence; Relative homotopy group

homotopy group         

математика

гомотопическая группа

first homotopy group         
  • A loop on a [[2-sphere]] (the surface of a ball) being contracted to a point
MATHEMATICAL GROUP OF THE HOMOTOPY CLASSES OF LOOPS IN A TOPOLOGICAL SPACE
First homotopy group; Fundamental groups; Fundametal group; Fundamental homotopy group; Surface group; Fundamental Group
одномерная группа гомотопий
homotopy         
  • isotopy]].
CONTINUOUS DEFORMATION BETWEEN TWO CONTINUOUS MAPS
Homotopic; Homotopy equivalent; Homotopy equivalence; Homotopy invariant; Homotopy class; Null-homotopic; Homotopy type; Nullhomotopic; Homotopy invariance; Homotopy of maps; Homotopically equivalent; Homotopic maps; Homotopy of paths; Homotopical; Homotopy classes; Null-homotopy; Null homotopy; Nullhomotopic map; Null homotopic; Relative homotopy; Homotopy retract; Continuous deformation; Relative homotopy class; Homotopy-equivalent; Homotopy extension and lifting property; Isotopy (topology); Homotopies

общая лексика

гомотопический

гомотопия

гомотопность

n-th homotopy group - n-я гомотопическая группа

Смотрите также

algebraic homotopy; based homotopy; bound homotopy; cellular homotopy; chain homotopy; combinatorial homotopy; compact homotopy; composed homotopy; constant homotopy; continuous homotopy; contrachain homotopy; contracting homotopy; covering homotopy; cyclic homotopy; differentiable homotopy; etale homotopy; fiber homotopy; filtration homotopy; free homotopy; geometric homotopy; homotopy associative; homotopy associativity; homotopy axiom; homotopy boundary; homotopy bridge; homotopy centerline; homotopy class; homotopy classification; homotopy commutative; homotopy couple; homotopy decomposition; homotopy dependence; homotopy diagram; homotopy domination; homotopy extension; homotopy functor; homotopy group; homotopy idempotent; homotopy identity; homotopy invariance; homotopy invariant; homotopy inverse; homotopy jog; homotopy letter; homotopy n-skeleton; homotopy obstruction; homotopy operator; homotopy problem; homotopy product; homotopy property; homotopy relation; homotopy self-equivalence; homotopy sphere; homotopy theory; homotopy torus; homotopy transgression; homotopy triviality; homotopy type; homotopy unit; isovariant homotopy; left homotopy; lifting homotopy; loop homotopy; normal homotopy; null homotopy; partial homotopy; preservation of homotopy; proper homotopy; quasiaffine homotopy; quasipolynomial homotopy; regular homotopy; relative homotopy; retracting homotopy; right homotopy; semiconstant homotopy; simplicial homotopy; small homotopy; smooth homotopy; strict homotopy; strong homotopy; uniform homotopy; weak homotopy

Definitie

Крайслер

Wikipedia

Homotopy group

In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted π 1 ( X ) , {\displaystyle \pi _{1}(X),} which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.

To define the n-th homotopy group, the base-point-preserving maps from an n-dimensional sphere (with base point) into a given space (with base point) are collected into equivalence classes, called homotopy classes. Two mappings are homotopic if one can be continuously deformed into the other. These homotopy classes form a group, called the n-th homotopy group, π n ( X ) , {\displaystyle \pi _{n}(X),} of the given space X with base point. Topological spaces with differing homotopy groups are never equivalent (homeomorphic), but topological spaces that are not homeomorphic can have the same homotopy groups.

The notion of homotopy of paths was introduced by Camille Jordan.

Vertaling van &#39homotopy group&#39 naar Russisch